COMMON POOL OF GENERIC ELECTIVES (GE) Semester-V COURSES OFFERED BY DEPARTMENT OF MATHEMATICS

Category-IV

GENERIC ELECTIVES (GE-5(i)): NUMERICAL METHODS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code						Pre-requisite
		Lecture		Practical/ Practice	criteria	of the course
Numerical Methods	4	3	0	1	Class XII pass with Mathematics	NIL

Learning Objectives: The core purpose of the course is to:

 Acquaint students with various topics in numerical solutions of nonlinear equations in one variable, interpolation and approximation, numerical differentiation and integration, direct methods for solving linear systems, numerical solution of ordinary differential equations using Computer Algebra System (CAS).

Learning Outcomes: The course will enable the students to:

- Find the consequences of finite precision and the inherent limits of numerical methods.
- Appropriate numerical methods to solve algebraic and transcendental equations.
- Solve first order initial value problems of ODE's numerically using Euler methods.

SYLLABUS OF GE-5(i)

UNIT-I: Errors and Roots of Transcendental and Polynomial Equations

Errors: Roundoff error, Local truncation error, Global truncation error; Order of a method, Convergence, and terminal conditions; Bisection method, Secant method, Regula–Falsi method, Newton–Raphson method.

UNIT-II: Algebraic Linear Systems and Interpolation

Gaussian elimination method (with row pivoting); Iterative methods: Jacobi method, Gauss-Seidel method; Interpolation: Lagrange form, Newton form, Finite difference operators.

UNIT-III: Numerical Differentiation, Integration and ODE

First and second order numerical derivatives; Trapezoidal rule, Simpson's rule for numerical integration; Ordinary differential equation: Euler's, and Runge-Kutta method.

Essential Readings

- 1. Chapra, Steven C. (2018). Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education.
- 2. Fausett, Laurene V. (2009). Applied Numerical Analysis Using MATLAB. Pearson. India.
- 3. Jain, M. K., Iyengar, S. R. K., & Jain R. K. (2012). Numerical Methods for Scientific and Engineering Computation (6th ed.). New Age International Publishers. Delhi.