Mathematics: Introduction to Linear Algebra

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		
Introduction	4	3	1	0	Class XII	NIL
to Linear					pass with	
Algebra					Mathematic	
					s	

Learning Objectives: The objective of the course is:

- To introduce the concept of vectors in \mathbb{R}^n .
- Understand the nature of solution of system of linear equations.
- To view the $m \times n$ matrices as a linear function from \mathbb{R}^n to \mathbb{R}^m and vice versa.
- To introduce the concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^n in terms of vectors and the interrelation of vectors with matrices.
- Understand important uses of eigenvalues and eigenvectors in the diagonalization of matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

SYLLABUS OF GE-2(ii)

UNIT - I: Vectors and Matrices

(18 hours)

Fundamental operations and properties of vectors in \mathbb{R}^n , Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz and triangle inequality, Orthogonal and parallel vectors; Solving system of linear equations using Gaussian elimination, and Gauss-Jordan row reduction, Reduced row echelon form; Equivalent systems, Rank and row space of a matrix; Eigenvalues, eigenvectors and characteristic polynomial of a square matrix; Diagonalization.

UNIT – II: Vector Spaces

(12 hours)

Definition, examples and some elementary properties of vector spaces; Subspaces, Span, Linear independence and dependence; Basis and dimension of a vector space; Diagonalization and bases.

UNIT – III: Linear Transformations

(15 hours)

Definition, examples and elementary properties of linear transformations; The matrix of a linear transformation; Kernel and range of a linear transformation, The dimension theorem, one-to-one and onto linear transformations.