DISCIPLINE SPECIFIC CORE COURSE - MATHEMATICS

DSC-3 (Minor): Elementary Linear Algebra

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		(if any)
Elementary	4	3	1	0	Class XII pass	NIL
Linear					with	
Algebra					Mathematics	

Learning Objectives: The objective of the course is:

- To introduce the concept of vectors in \mathbb{R}^n .
- Understand the nature of solution of system of linear equations.
- To view the $m \times n$ matrices as a linear function from R^n to R^m and vice versa.
- To introduce the concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^n in terms of vectors and the interrelation of vectors with matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

SYLLABUS OF DSC-2

UNIT – I: Euclidean Space \mathbb{R}^n and Matrices

(18 hours)

Fundamental operations with vectors in Euclidean space \mathbb{R}^n , Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz inequality, Triangle inequality, Solving system of linear equations using Gaussian elimination, Application: Curve Fitting, Gauss-Jordan row reduction, Reduced row echelon form, Application: Solving several systems simultaneously, Equivalent systems, Rank and row space of a matrix, Eigenvalues, Eigenvectors, Eigenspace, Diagonalization, Characteristic polynomial of a matrix.

UNIT – II: Introduction to Vector Spaces

(12 hours)

Definition, Examples and some elementary properties of vector spaces, Subspaces, Span, Linear independence and linear dependence of vectors, Basis and dimension of a vector space, Maximal linearly independent sets, Minimal spanning sets.

UNIT – III: Linear Transformations

(15 hours)

Linear transformations: Definition, Examples and elementary properties, The matrix of a linear transformation, Kernel and range of a linear transformation, The dimension theorem, one-to-one and onto linear transformations, Invertible linear transformations, Isomorphic vector spaces.