B.A.(Prog.) Mathematics Discipline Specific Core Course-(DSC-7) (Minor)

DSC-7: ABSTRACT ALGEBRA

Course title & Code		Credit distribution of the course				Pre-requisite
		Lecture		Practical/ Practice		of the course (if any)
Abstract Algebra	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of the course is to introduce:

- Modular arithmetic, fundamental theory of groups, rings, integral domains, and fields.
- Symmetry group of a plane figure, and basic concepts of cyclic groups.
- Cosets of a group and its properties, Lagrange's theorem, and quotient groups.

Learning Outcomes: This course will enable the students to:

- Appreciate ample types of groups present around us which explains our surrounding better, and classify them as abelian, cyclic and permutation groups.
- Explain the significance of the notion of cosets, normal subgroups and homomorphisms.
- Understand the fundamental concepts of rings, subrings, fields, ideals, and factor rings.

SYLLABUS OF DISCIPLINE A-4

UNIT-I: Introduction to Groups

Modular arithmetic; Definition and examples of groups, Elementary properties of groups, Order of a group and order of an element of a group; Subgroups and its examples, Subgroup tests; Center of a group and centralizer of an element of a group.

UNIT-II: Cyclic Groups, Permutation Groups and Lagrange's Theorem

Cyclic groups and its properties, Generators of a cyclic group; Group of symmetries; Permutation groups, Cyclic decomposition of permutations and its properties, Even and odd permutations and the alternating group; Cosets and Lagrange's theorem; Definition and examples of normal subgroups, Quotient groups; Group homomorphisms and properties.

UNIT-III: Rings, Integral Domains and Fields

Definition, examples and properties of rings, subrings, integral domains, fields, ideals and factor rings; Characteristic of a ring; Ring homomorphisms and properties.