B.A. (Prog.) Semester-V with Mathematics as Major

Category-II

DISCIPLINE SPECIFIC CORE COURSE (DSC-5): LINEAR PROGRAMMING

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

	Credits	Credit distribution of the course			0	Pre-requisite
Code		Lecture		Practical/ Practice		of the course (if any)
Linear Programming	4	3	1	0	Class XII pass with Mathematics	NIL

Learning Objectives: The primary objective of this course is to introduce:

- The solution of linear programming problem using simplex method.
- The solution of transportation and assignment problems.
- Game theory which makes possible the analysis of the decision-making process of two interdependent subjects.

Learning Outcomes: This course will enable the students to:

- Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.
- Write the dual of a linear programming problem.
- Solve the transportation and assignment problems.
- Learn about solution of rectangular games using graphical method and dominance.
- Formulate game to a pair of associated prima-dual linear programming problems.

SYLLABUS OF DSC-5

UNIT-I: Linear Programming Problem, Simplex Method, and DualityStandard form of the LPP, graphical method of solution, basic feasible solutions, and convexity; Introduction to the simplex method: Optimality criterion and unboundedness, Simplex tableau and examples, Artificial variables; Introduction to duality, Formulation of the dual problem with examples.

UNIT-II: Transportation and Assignment Problems

Definition of transportation problem, finding initial basic feasible solution using Northwest-corner method, Least-cost method, and Vogel approximation method; Algorithm for solving transportation problem; Hungarian method of solving assignment problem.

UNIT-III: Two-Person Zero-Sum Games Introduction to game theory, rectangular games, Mixed strategies, Dominance principle; Formulation of game to primal and dual linear programming problems.

Essential Readings