B.Com.(Hons.) Discipline Specific Course- 3.1(DSC-3.1)

DSC-7: BUSINESS MATHEMATICS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	Credit distribution of the course			Eligibili	Pre-requisi
title & Code		Lecture	Tutorial	Practical/ Practice	ty criteria	te of the course (if any)
DSC -3.1: Business Mathematic s	4	3	0	1	Pass in XII	NIL

Learning Objectives

The course aims to familiarize the learners with the basic mathematical tools with special emphasis on applications to business and economic situations.

Learning outcomes

After completion of the course, learners will be able to:

- 1. Assess the applicability of matrices as mathematical tools in representing a system of equations.
- 2. Apply differential calculus to solve simple business problems.
- 3. Evaluate business problems involving complex linear relationships between decision variables and their determining factors.
- 4. Explain mathematical formulation and solution of problems related to finance including different methods of interest calculation, future and present value of money.
- 5. Develop programming for business problems involving constrained optimisation.

SYLLABUS OF DSC-3.1

Unit 1: Matrices and Determinants

Overview of Matrices. Solution of a system of linear equations (having a unique solution and involving not more than three variables) using matrix inversion method and Cramer's Rule

Leontief Input Output Model (Open Model Only).

Unit 2: Calculus-I

Concepts and rules of differentiation. Concept of Marginal Analysis: Marginal Revenue, Marginal Cost. Concept of Elasticity of demand and supply.

Application of Maxima and Minima problems: Revenue, Cost, Profit, Economi Quantity, Optimal trade in time.

Unit 3: Calculus-II

Partial Differentiation: Partial derivatives up to second order. Homogeneity of a function and Euler's theorem. Production Function: Returns to factor, Returns to scale. MRTS and Elasticity of Substitution.

Application of Maxima and Minima problems involving two independent variables.

Integration: Nature of commodities and partial elasticity of demand, Applications of marginal analysis, Consumer Surplus and Producer Surplus.

Unit 4: Mathematics of Finance

Rates of interest: nominal, effective and their inter-relationships in different compounding situations.

Compounding a sum using different types of rates. Applications relating to Depreciation of assets and average due date.

Types of annuities: ordinary, due and deferred - Discrete and continuous. Perpetuity. Determination of future and present values using different types of rates of interest. Applications relating to Capital Expenditure and Leasing.

Unit 5: Linear Programming

Formulation and Assumptions of LPP, Solution by Simplex Method- maximization and minimization cases. Shadow prices of the resources. Special Cases: Identification of unique and multiple optimal solutions, unbounded solution, infeasibility and degeneracy.

Practical Exercises:

The learners are required to:

- 1. Assess the use of matrices in evaluating competing alternatives.
- 2. Apply differential calculus to solve hypothetical business problems.
- 3. Evaluate business problems as an application of linear programming.
- 4. Gather information about various deposit and loan schemes of banks to find out interest rate differentials, and compounded value.
- 5. Gather information about annuity schemes in the investment markets like periodic home mortgage payments, insurance payments and pension payments, life insurance products as an annuity.
- 6. Identify the decision-making variables and assess their functional relationship with other variables affecting the decision in a hypothetical business and economic situation.
- 7. Develop programming for hypothetical business problems involving constrained optimisation.

Assessment Criteria

The Assessment for this paper would include a theory exam of 50 marks, Practical Exam of 25 marks and Internal assessment of 25 marks. Internal assessment will include 20 marks for class tests/assignments, and 5 marks for attendance. There shall be 3 Credit Hrs. for Lectures + one Credit Hr. (Two Practical Periods per week per batch) for P.Use of a simple calculator is allowed. Proofs of theorems/ formulae are not required.